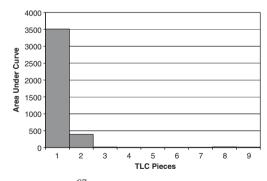
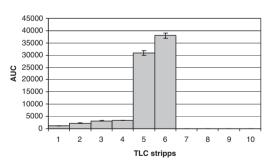
JLCR

Short Research Article

Development of (⁶⁷Ga)2-acetylpyridine 4,4-dimethyl thiosemicarbazone for detection of malignancies[†]

AMIR R. JALILIAN^{1,*}, FARIMA HAGHIGHI MOGHADAM^{1,2}, ALI NEMATI² and Mohammad Abedini²


Received 16 August 2006; Revised 14 November 2006; Accepted 17 November 2006


Keywords: Ga-67; labeling; SPECT; malignancies; thiosemicarbazones

Introduction

Gallium-67 is used for single photon emission computed tomography. Gallium-68 and gallium-66 are positron emitters, mostly used in the research studies through the world. The most practically used gallium radio-pharmaceutical is gallium-67 citrate, capable of detecting inflammation and/or infections and certain tumors. Thiosemicarbazone gallium complexes have shown interesting anti-proliferative activity *in vitro* and *in vivo*.

The most studied compounds are pyridine-based compounds, this is possibly due to their resemblance to pyridoxal metabolites that attach to co-enzyme

Figure 1 TLC of the final [67 Ga]APTSM₂ solution (right) and Ga³⁺ (left) eluted by ammonium acetate 10%: MeOH (1:1). AUC: area under curve of 184 keV peak in gamma spectrum.

¹ Cyclotron and Nuclear Medicine Department, Nuclear Research Center for Agriculture and Medicine (NRCAM), Moazzen Blvd., P.O.Box: 31485-498, Rajaeeshahr, Karaj, Iran

²Inorganic Chemistry Department, Faculty of Sciences, Tehran University, Tehran, Iran

^{*}Correspondence to: Amir R. Jalilian, Cyclotron and Nuclear Medicine Department, Nuclear Research Center for Agriculture and Medicine (NRCAM), Moazzen Blvd., P.O. Box: 31485–498, Rajaeeshahr, Karaj, Iran. E-mail: ajalilian@nrcam.org

[†]Proceedings of the Ninth International Symposium on the Synthesis and Applications of Isotopically Labelled Compounds, Edinburgh, 16–20 July 2006.

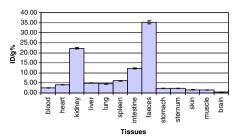


Figure 2 Biodistribution of $[^{67}Ga]APTSM_2$ (1.85 MBq, 50 μ Ci) in normal rats 2 h (left) and 22 h (right) after iv injection via tail vein.

 B_6 -dependant enzymes and cause enzyme inhibition. Due to the importance of pyridine thiosemicarbazones in anti-neoblastic activity and the necessity of gallium complexation in most of these compounds for enhancement of their activity, the idea of developing a possible tumor imaging agent using SPECT by incorporating 67 Ga into a suitable chelate, i.e. APTSM $_2$ was investigated.

Results and discussion

The reaction of 2-acetylpyridine N-dimethylthiosemicarbazone (HL) with $GaCl_3$ in absolute ethanol in 1:1 molar ratio has yielded the complex $[Gal]^+$. The reaction was optimized for time, temperature and solvent. The labeling was not satisfactory when water was present in the solvent. The solution was stable at room temperature up to 4 days post-formulation, allowing

performance of biological experiments. Incubation of [67 Ga]APTSM₂ in freshly prepared human serum for 2 h at 37°C showed no loss of 67 Ga from the complex. The radiochemical purity of complex remained at 99% for 2 h under physiologic conditions. The lipophilicity of [67 Ga]APTSM₂ compound was measured using octanol/water partition coefficient, P ($\approx P$ =12). The lipophilicity is over 1.07 followed by biodistribution studies (Figure 1), (Figure 2).

REFERENCES

- 1. Arion VB, Jakupec MA, Galanski M, Unfried P. *J Inorg Biochem* 2002; **91**: 298–305.
- 2. Belicchi-Ferrari M, Bisceglie F, Casoli C, Pinelli S, Tarasconi P. *J Med Chem* 2005; **48**: 1671–1675.
- 3. Belicchi-Ferrari M, Bisceglie F, Bergamo A, Sava G. *J Inorg Biochem* 2004; **98**: 301–312.
- 4. Hall IH, Barnes BJ, Rowell BJ, Shaffer KA, Cho SE, West DX. *Pharmazie* 2001; **56**: 648–653.